Name:	() Class:	Date:

Overview

This worksheet covers the following:

- 1. Application of graphs of quadratic equation
- 2. Graphs of Cubic functions

Introduction

Previously we learned we can express quadratic functions in the form of :

- y = (x-p)(x-q)

From the graph, we can show:

min or max point

(how do we know?)

- line of symmetry
- y-intercept
- x-intercept

(if applicable)

Now that we have learned how to sketch quadratic functions, let's see how we can apply this knowledge to real-world problems.

Example 1:

The weekly profit y (in \$) for producing and selling x vases is given by $y = -x^2 + 60x$

- a) Sketch the graph for $x \ge 0$
- b) What is the maximum weekly profit?
- c) How many vases must be produced and sold in order to obtain this maximum profit? (Ans: b) \$900 c) 30 vases)

(A)
$$y = -x^2 + 60x$$

= -(x²-60x)

Practice 1:

The daily profit y (in dollars) from the sales of a certain product can be represented by the function $y = 80x - x^2$, where x is the number of products produced in a day.

(6)

- Sketch the graph for $x \ge 0$.
- b) How many products must be produced daily in order to maximise the profit? What is the maximum daily profit?

(Ans: b) 40 products)

No. of products = 40 , Maximum daily profits = \$ 1600 =

Practice 2:

When a ball is thrown into the air, its height after t seconds is given by $y = -2t^2 + 16t$

t	0	1	2	3	4	5	6	7	8
$y = -2t^2 + 16t$	0	14	24	30	32	30	24	14	0

- a) When is the ball at ground level (zero height)?
- b) At which times is the ball 10m above the ground?
- c) At which times is the ball 28m above the ground?

In addition to quadratic functions, we also need to know how the following types of functions look like:

Linear graphs

5

Quadratic graphs

ſ

- Cubic graphs
- · Reciprocal / Squared-Reciprocal graphs
- · Exponential graphs

The function $y = ax^n$, where a is a real constant and n is a rational number, is called a **power function**. We shall study the graph of this function for n = -2, -1, 0, 1, 2 and 3, in this section.

A. Graph of $y = ax^n$ for n = 0, 1, 2, and 3

Case n = 0

When n = 0, $y = ax^n = ax^0$.

Since $x^0 = 1$ for all x except x = 0, we shall regard the function as

$$y = a$$
.

This is the **constant function** that we learnt in Secondary Two. The diagram on the right shows the graph of two constant functions, y = 3 (i.e. a = 3) and y = -2 (i.e. a = -2).

Case n = 1

When n = 1, the function $y = ax^n$ becomes

$$y = ax$$
.

We learnt that this is a linear function. The diagram on the right shows the graphs of y = 2x and y = -x.

Case n=2

When n = 2, $y = ax^n$ becomes

$$y = ax^2$$
.

We know that this is a quadratic function. The diagram on the right shows the graphs of $y = x^2$ and $y = -\frac{1}{2}x^2$.

Case n = 3

When
$$n = 3$$
, $y = ax^n$ becomes $y = ax^3$.

This function is new to us. It is known as a cubic function. Let us draw the graph of this function by plotting some points as shown in the following example.

Example 1:

Let's look at the graph of $y = x^3$

We first set up a table of values of x from -2 to +2

X	-2	-1.5	-1	-0.5	0	0.5	1	1.5	2
У	-8	-3.375	-1	-0.125	0	0.125	1	3.375	8

Choose a suitable scale for the axes to fit in these values of x and y

Here we choose the scale: 2 cm to represent 1 unit on the x axis 2 cm to represent 2 units on the y axis

Let us plot few more points to get a better idea of the shape of the curve Join these points with a smooth curve.

Question: Does the graph have rotational symmetry? If yes, what's the order?

Now let's draw the graph of $y = x^3 - 3x$ for values of x from -2 to +2 taking intervals of 0.5.

We first set up a table of values of x from -2 to +2

x	-2	-1.5	-1	-0.5	0	0.5	1	1.5	2
У	-2	1.125	2	1.375	0	-1.375	-2	-1.125	2

Join these points with a smooth curve.

This curve has rotational symmetry of order 2 about the origin

Question:

Using the graph, solve the equation $x^3 - 3x = 0$

How many solutions are there?

Practice

Draw the graph of $y = x^3 - 6x + 1$ for values of x from -3 to +3.

The table of values is given below.

x	-3	-2.5	-2	-1.5	-1	-0.5	0	0.5	1	1.5	2	2.5	3
у	-8	0.375	5	6.625	6	3.875	1	-1.875	-4	-4.625	-3	1.625	10

Use your graph to solve the following:

- $x^3 6x + 1 = 0$
- $x^3 8x = 0$ b)
- Find the range of x such that $x^3 6x + 1 > 2x + 1$ c)

(Ans: a) -2.55, 0.15, 2.4

- b) -2.9, 0, 2.8
- c) -2.9<x<0 and x>2.8)

$$x^{2}-8x+2x+1=2x+1$$

 $x^{2}-6x+1=2x+1$

Homework

Answer this question neatly on a piece of graph paper.

The table below gives the x and y coordinates of points which lie on the curve

$$y = 8x^3 + 2x^2 - 13x + 3$$

X	-2	-1.5	-1	-0.5	0	0.5	1	1.5
y	-27	0	10	9	3	-2	0	15

- Taking a suitable scale, draw the graph. a)
- Use your graph to solve the following equation b)

i)
$$8x^3 + 2x^2 - 13x + 3 = 0$$

ii)
$$8x^3 + 2x^2 - 13x - 2 = 0$$

iii)
$$8x^3 + 2x^2 - 19x + 1 = 0$$

- The graph of the curve $y = \frac{1}{3}(2x^3 x^2 13x 6)$ is given. 2. By plotting a suitable straight line on the graph, solve the (a) $2x^3 - x^2 - 13x + 9 = 0$ following equations:

(b)
$$2x^3 - x^2 - 22x + 9 = 0$$

12 - 13x - 6) is given.
The graph, solve the fall
$$2x^3 - x^2 - 13x + 9 = 0$$

12 - $x^2 - 13x + 9 = 0$
13 - $x^2 - 13x + 9 - 15 = -15$
14 - $x^3 - x^2 - 13x + 9 - 15 = -15$
15 - $x^3 - x^2 - 13x - 6 = -15$
16 - $x^3 - x^2 - 13x - 6 = -15$
17 - $x^3 - x^2 - 13x - 6 = -15$
18 - $x^3 - x^2 - 13x - 6 = -15$
19 - $x^3 - x^2 - 13x - 6 = -15$
19 - $x^3 - x^2 - 13x - 6 = -15$
19 - $x^3 - x^2 - 13x - 6 = -15$
10 - $x^3 - x^2 - 13x - 6 = -15$

(b)

$$2x^{3}-x^{2}-22x+9=0$$

 $2x^{3}-x^{2}-12x+9x+9=15=9x-15$
 $2x^{3}-x^{2}-13x-6=9x-15$
 $\frac{1}{3}(2x^{3}-x^{2}-13x-6)=\frac{1}{3}(9x-15)$
 $\frac{1}{3}(2x^{3}-x^{2}-13x-6)=3x-5$

x = - 3.7 ~ x = 0.8 or 2 = 2-4

x = -3.3 or x = 0.45 or x = 3.4

Given the graph of $y = 2x^3 + x^2 - 5x + 2$, add a line to the graph in order to solve

$$2x^3 + x^2 - 8x - 4 = 0$$

$$2x^{3} + x^{2} - 8x - 4 = 0$$

$$2x^{3} + x^{2} - 8x + 3x - 4 + 6 = 3x + 6$$

$$2x^{3} + x^{2} - 5x + 2 = 3x + 6$$

$$x = -2 \quad \text{at } x = -0.45 \quad \text{at } x = 2$$

- x = -2.7, 0.6, 2.4

x = 2, -0.45, -2

-15

-20

b) x = -3.4, 0.4, 3.25

Deadline: Apr 2011

What You Know vs How much you know about it

My Level of Understanding (0-100%):

What You Know Undergrad Everything Master's Ph.D. Oops! You overshot it! Nothing How much you know about it A Little

Graphmatica 2.0c © 2003 kSoft, Inc. - Untitled

Equations on screen:

1. $y=8x^3+2x-13x+3$

(ii)
$$8x^3 + 2x^2 - 13x - 2 + 5 = 5$$

 $8x^3 + 2x^2 - 13x + 3 = 5$

(iii)
$$8x^3 + 2x^2 - 19x + 1 = 0$$

 $8x^3 + 2x^2 - 19x + 6x + 1 + 2 = 6x + 2$
 $8x^3 + 2x^2 - 13x + 3 = 6x + 2$

6.

5.366

Graphmatica 2.0c © 2003 kSoft, Inc. - Untitled

Equations on screen:

1. $y=x^3-6x+1$